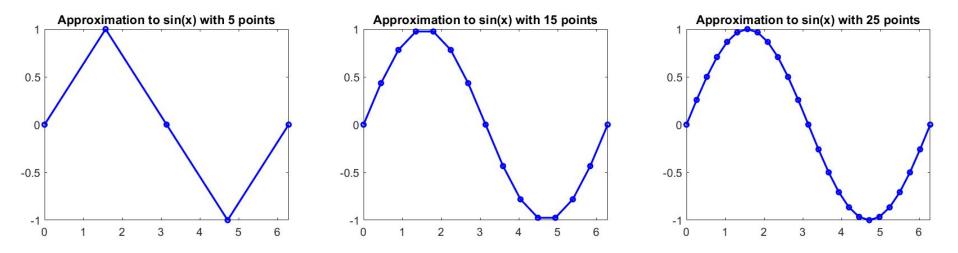

CS 1112 Introduction to Computing Using MATLAB

Instructor: Dominic Diaz

Website: https://www.cs.cornell.edu/courses/cs111 2/2022fa/


Today: Vectors (1D arrays)

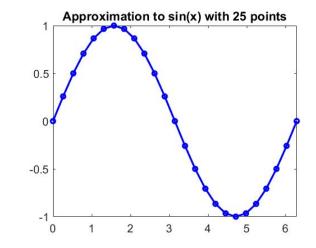
Agenda and announcements

- Last time
 - More vectors (initializing vectors, plotting vectors, random numbers, and examples
- Today
 - Color computation with linear interpolation!
- Announcements
 - Project 3 due Wednesday 10/5
 - Yesterday's discussion
 - Get first parts checked off by consultant or TA
 - Submit last parts on MATLAB grader

Discrete approximation of functions

Approximate the function sine by plotting N discrete points.

Plots are made from discrete points with lines between those points, but it can look continuous if there are many points!

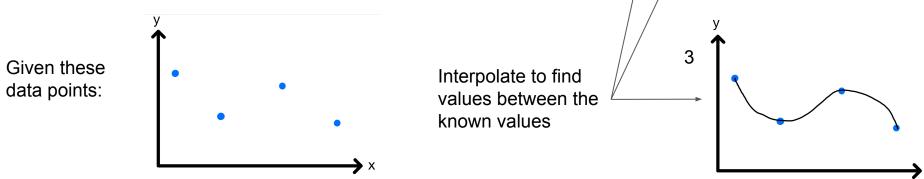

Plotting the sine function

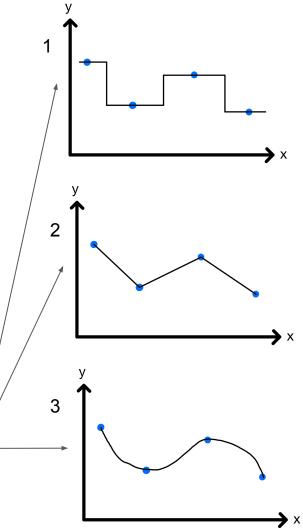
% plot the sine function with numPts number of points numPts = 25; x = linspace(0, 2*pi, numPts);

```
y = zeros(1, length(x));
for i = 1:length(x)
    y(i) = sin(x(i));
ond
```

end

plot(x,y, "-ob")


Х	0	0.261	0.527	0.786		6.28	
	+						
<pre>sin(x(i))</pre>							
	*						
У	0.0	0.259	0.5	0.707		0.0	


Interpolation

Interpolation is a method of constructing new data points based on information at known data points. Many different interpolation schemes:

- 1. Copy value of closest known data point
- 2. Linearly interpolate between adjacent points
- 3. Interpolate across more points than two

"Best" choice depends on what you know about the data

Interpolation

Interpolation is a method of constructing new data points based on information at known data points. Many

different interpolation schemes.

- 1. Copy value of closest value
- 2. Linearly interpolate between adjacent points

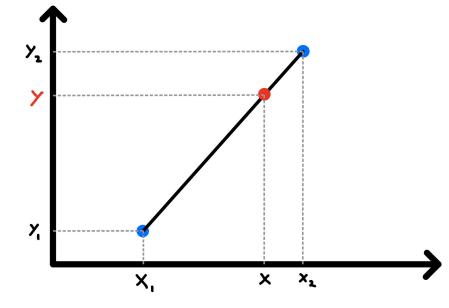
3. Interpolate across more points than two

"Best" choice depends on what you know about the data

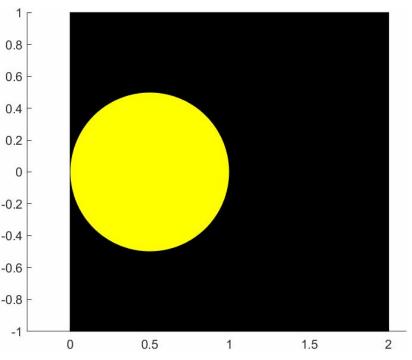
Given these data points:

Should know how to do linear interpolation for prelim/final

Interpolate to find values between the known values


Formula for linear interpolation

Given points (x1,y1) and (x2,y2), interpolate between these two points: given some new x in the interval (x1, x2), calculate the corresponding y.

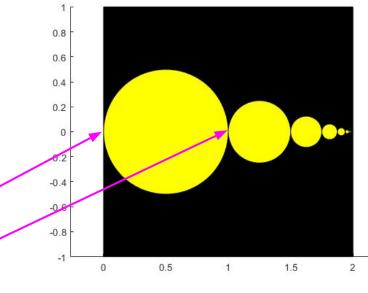

How? Solve for y in terms of x: Note: the slope from (x1, y1) to (x,y) is the same as (x1,y1) to (x2, y2).

x-x1

$$\frac{y - y1}{x - x1} = \frac{y2 - y1}{x2 - x1}$$
$$y = y1 + \frac{y2 - y1}{x2 - x1}$$

Example: Draw shrinking disks with interpolated colors between yellow and black

Draw n shrinking disks with color that fade into the background. Starting color is yellow and background color is black. The (k+1)th disk has half the diameter of the kth disk.

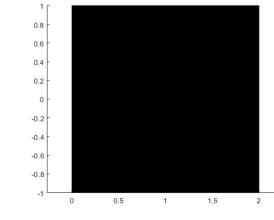

The first disk should have radius 0.5 and it's left-most point should be at (0,0). Disks are tangent to each other and have centers on the x-axis.

Let's start with an easier problem: Forget color for now and let's just draw the disks!

Draw yellow shrinking disks

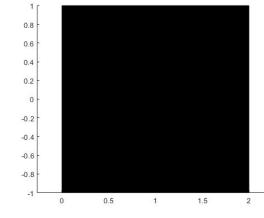
Draw n shrinking disks whose centers are all along the x-axis. The first disk should have radius 0.5 and it's leftmost point should be at (0,0). Consecutive disks should be tangent to each other and (k+1)th disk has half the radius of the kth disk.

Disk	left tangent point	radius
1	0	0.5
2	0 + 1	0.25
3	0 + 1 + 1/2	0.125
4	0 + 1 + 1/2 + 1/4	0.0625


close all	
figure	
axis ([0 2 -1 1])	
axis equal	
hold on	
% Draw black background	
DrawRect(0,-1,2,2,'k')	

% Create variables so we can draw the first disk

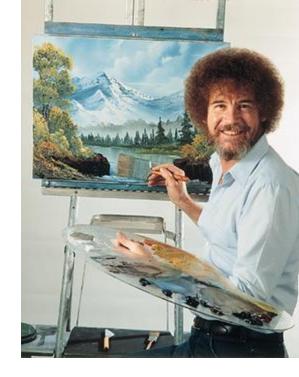
```
% Draw sequence of disks
for k = 1:n
```


% Draw disk

% update left tangent location and radius for next disk

end hold off

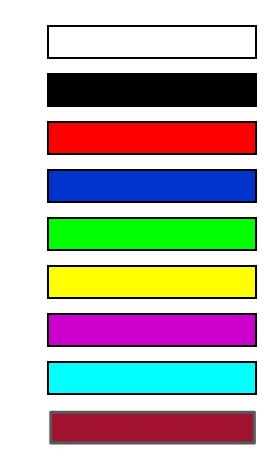
```
close all
figure
axis ([0 2 -1 1])
axis equal
hold on
% Draw black background
DrawRect(0,-1,2,2,'k')
x = 0;
                     % Left tangent point of first disk
                      % radius of first disk
r = 0.5;
n = 10;
                   % Number of disks to be drawn
yellow = [1 1 0];
% Draw sequence of disks
for k = 1:n
     % Draw disk
     % update left tangent location and radius for next disk
```



end hold off

```
close all
                                                                                  0.8
figure
                                                                                  0.6
axis ([0 2 -1 1])
                                                                                  0.4
axis equal
                                                                                  0.2
hold on
                                                                                  0
                                                                                  -0.2
% Draw black background
                                                                                 -0.4
DrawRect(0,-1,2,2,'k')
                                                                                  -0.6
x = 0;
                       % Left tangent point of first disk
                                                                                  -0.8
r = 0.5;
                        % radius of first disk
                                                                                  -1
                                                                                           0.5
                                                                                                      1.5
                                                                                      0
n = 10;
                     % Number of disks to be drawn
yellow = [1 1 0];
% Draw sequence of disks
for k = 1:n
     DrawDisk(x+r, 0, r, yellow)
                                                         Now let's deal with the fading
     pause(.5)
                                                         color!
     x = x + 2^{*}r;
     r = r/2;
end
hold off
```

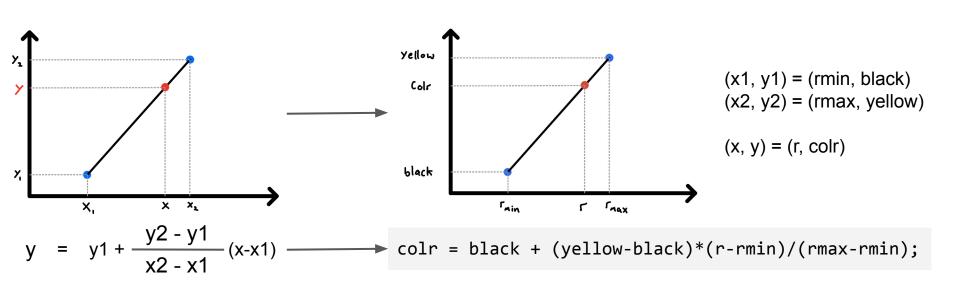
Colors in MATLAB

Colors can be represented by a vector of length 3 storing RGB values


Examples: colr = [1, 0, 0] corresponds to red colr = [1, 1, 1] corresponds to white colr = [0, 0, 0] corresponds to black colr = [1, 1, 0] corresponds to yellow

Each element of the vector must be a value between 0 and 1.

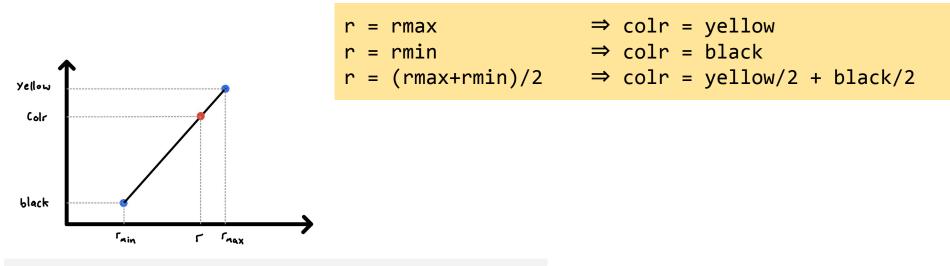
Color options


White	'w'	or	[1	1	1]			
Black	'k'	or	[0]	0	0]			
Red	'r'	or	[1	0	0]			
Blue	'b'	or	[0	0	1]			
Green	'g'	or	[0	1	0]			
Yellow	'у'	or	[1	1	0]			
Magenta	'm'	or	[1	0	1]			
Cyan	'c'	or	[0]	1	1]			
Random color	[0.0	6350	0	. 07	780	0.1	.840)]

Interpolated colors

Let's determine the color interpolation Steps in linear interpolation:

- 1. Determine independent and dependent variable
- 2. Draw plot
- 3. Use formula



rmax = 0.5

rmin = 0

Sanity check for color interpolation

When r = rmax = 0.5, we expect colr = yellow
When r = rmin = 0, we expect colr = black
When r = 0.25, we expect colr to be something between black and yellow

colr = black + (yellow-black)*(r-rmin)/(rmax-rmin);

```
close all
                                                                                 0.8
                                                                                 0.6
figure
                                                                                 0.4
axis ([0 2 -1 1])
                                                                                 0.2
axis equal
                                                                                 0
hold on
                                                                                 -0.2
% Draw black background
                                                                                 -0.4
DrawRect(0, -1, 2, 2, 'k')
                                                                                 -0.6
x = 0;
                        % Left tangent point of first disk
                                                                                 -0.8
                                                                                 -1
                      % radius of first disk
r = 0.5;
                                                                                     0
                                                                                          0.5
                                                                                                1
                                                                                                     1.5
rmax = r; rmin = 0; % max and min disk radius values (for interpolation)
n = 10;
                       % Number of disks to be drawn
yellow = [1 \ 1 \ 0];
black = [0 0 0];
% Draw sequence of disks
for k = 1:n
     % colr is the color vector of the kth disk
     % use equation y = y1 + (y2-y1)*(x-x1)/(x2-x1)
     colr = black + (yellow-black)*(r-rmin)/(rmax-rmin);
     DrawDisk(x+r, 0, r, colr)
     pause(.5)
     x = x + 2^{*}r;
     r = r/2;
end
hold off
```